

iii

Deliverable Title

November 2021

WP3 – MATRYCS Data Services and

Semantic Enrichment Layer

D3.2 | End-to-End Security

Framework

iii

Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not necessarily

reflect the opinion of the European Union. Neither the EASME nor the European Commission is

responsible for any use that may be made of the information contained therein.

Copyright Message

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are free

to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and

build upon the material for any purpose, even commercially) under the following terms: (i) attribution

(you must give appropriate credit, provide a link to the license, and indicate if changes were made; you

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your

use); (ii) no additional restrictions (you may not apply legal terms or technological measures that legally

restrict others from doing anything the license permits).

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

Modular Big Data Applications for Holistic

Energy Services in Buildings

https://creativecommons.org/licenses/by/4.0/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

iv

D3.2: End-to-End Security Framework

Grant Agreement Number 101000158 Acronym MATRYCS

Full Title Modular Big Data Applications for Holistic Energy Services in Buildings

Topic LC-SC3-B4E-6-2020 | Big data for buildings

Funding scheme H2020- IA: Innovation Action

Start Date October 2020 Duration 36

Project URL www.matrycs.eu

Project Coordinator ENG

Deliverable D3.2: End-to-End Security Framework

Work Package WP3 – MATRYCS Data Services and Semantic Enrichment Layer

Delivery Month (DoA) M11 Version 1.0

Actual Delivery Date 18/11/2021

Nature Report Dissemination Level Public

Lead Beneficiary COMSENSUS

Authors

Timotej Gale [COMSENSUS], Carolina Fortuna [COMSENSUS], Andrej

Čampa [COMSENSUS], Panagiotis Kapsalis [NTUA], Konstantinos

Alexakis [NTUA], George Korbakis [NTUA]

Quality Reviewer(s): Zhiyu Pan [RWTH], Michal Staša [SEVEN], Pasquale Andriani [ENG]

Keywords
End-to-End Security, Framework, Service Security, Identity and Access

Management, Cloud, Edge

Preface

MATRYCS focuses on addressing emerging challenges in big data management for buildings with an

open holistic solution for Business to Business platforms, able to give a competitive solution to

stakeholders operating in building sector and to open new market opportunities. MATRYCS Modular

Toolbox, will realise a holistic, state-of-the-art AI-empowered framework for decision-support models,

data analytics and visualisations for Digital Building Twins and real-life applications aiming to have

significant impact on the building sector and its lifecycle, as it will have the ability to be utilised in a wide

range of use cases under different perspectives:

 Monitoring and improvement of the energy performance of buildings - MATRYCS-PERFORMANCE

 Design facilitation and development of building infrastructure - MATRYCS-DESIGN

 Policy making support and policy impact assessment - MATRYCS-POLICY

 De-risking of investments in energy efficiency - MATRYCS-FUND

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

v

D3.2: End-to-End Security Framework

Who We Are

N

o
Participant Name Short Name

Country

Code
Logo

1
ENGINEERING – INGEGNERIA INFORMATICA

SPA
ENG IT

2 NATIONAL TECHNICAL UNIVERSITY OF ATHENS NTUA GR

3 FUNDACION CARTIF CARTIF ES

4
RHEINISCH-WESTFAELISCHE TECHNISCHE

HOCHSCHULE AACHEN
RWTH DE

5 ACCADEMIA EUROPEA DI BOLZANO EURAC IT

6 HOLISTIC IKE HOLISTIC GR

7
COMSENSUS, KOMUNIKACIJE IN SENZORIKA,

DOO
COMSENSUS SL

8 BLAGOVNO TRGOVINSKI CENTER DD BTC SL

9
PRZEDSIEBIORSTWO ROBOT

ELEWACYJNYCHFASADA SP ZOO
FASADA PL

10 MIASTO GDYNIA GDYNIA PL

11
COOPERNICO - COOPERATIVA DE

DESENVOLVIMENTO SUSTENTAVEL CRL
COOPERNICO PT

12 ASM TERNI SPA ASM IT

13
VEOLIA SERVICIOS LECAM SOCIEDAD

ANONIMA UNIPERSONAL
VEOLIA ES

14
ICLEI EUROPEAN SECRETARIAT GMBH (ICLEI

EUROPASEKRETARIAT GMBH)
ICLEI DE

15
ENTE PUBLICO REGIONAL DE LA ENERGIA DE

CASTILLA Y LEON
EREN ES

16 VIDES INVESTICIJU FONDS SIA LEIF LV

17
COMITE EUROPEEN DE COORDINATION DE

L'HABITAT SOCIAL AISBL

HOUSING

EUROPE
BE

18 SEVEN, THE ENERGY EFFICIENCY CENTER Z.U. SEVEN CZ

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

vi

D3.2: End-to-End Security Framework

Contents

1 Introduction ... 12

1.1 Purpose of the Document ... 12

1.2 Structure of the Document ... 12

2 Security in Information Systems... 13

2.1 Root of Trust ... 14

2.2 End-to-End Security .. 15

2.2.1 Edge Environments ... 18

2.2.2 Cloud Environments ... 21

2.3 Identity and Access Management ... 23

2.3.1 OAuth2 Protocol .. 23

2.3.2 UMA 2 Protocol .. 25

2.3.3 UMA 2 and OAuth2: The Difference .. 30

2.4 Service-Level Security ... 31

2.4.1 Software Vulnerabilities and Threats ... 33

3 End-to-End Security Framework ... 36

3.1 Design ... 36

3.2 Technologies .. 39

3.2.1 PostgreSQL... 39

3.2.2 Keycloak .. 40

3.2.3 Istio .. 42

3.2.4 Vulnerability Detection and Mitigation .. 45

3.3 Initial Implementation .. 46

4 Security Integration in MATRYCS Ecosystem .. 48

4.1 Keycloak and MATRYCS Toolbox ... 49

4.2 Istio and Generic MATRYCS Services .. 51

5 Security Guidelines and Recommendations .. 54

6 Conclusions ... 56

References .. 57

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

7

D3.2: End-to-End Security Framework

Figures

Figure 1: Multi-layered structure of trust. ... 14

Figure 2: Scope of modern end-to-end security for distributed computing systems.................. 15

Figure 3: Conventional data governance chain. .. 16

Figure 4: Data flow at different data governance levels. ... 17

Figure 5: Security threats at different layers of the edge/cloud computing stack. 18

Figure 6: Service delivery models as shown in [19]. .. 22

Figure 7: OAuth2 protocol flow. .. 24

Figure 8: UMA 2 example. ... 26

Figure 9: Client attempts to access a protected resource. .. 27

Figure 10: Client Interacts with AS to get an Access Token. .. 28

Figure 11: Client attempts to access a Protected Resource by sending the RPT to AS. 30

Figure 12: OAuth2 authorization flow. ... 30

Figure 13: UMA 2 authorization flow. ... 31

Figure 14: Service mesh composition. .. 32

Figure 15: End-to-End Security Framework in high-level MATRYCS architecture, as shown in

D2.3. ... 36

Figure 16: End-to-End Security Framework composition. .. 37

Figure 17: MATRYCS End-to-End Security Framework architecture. .. 38

Figure 18: Keycloak authorization process. .. 42

Figure 19: End-to-End Security Framework interactions. .. 49

Figure 20: MATRYCS Toolbox integration with Keycloak. ... 50

Tables

Table 1: Example technologies for realizing edge and cloud IT stacks. ... 18

Table 2: Security aspects analysis of existing edge frameworks. .. 20

Table 3: Response received from Resource Server – 401. ... 27

Table 4: Request for Protection Token. .. 28

Table 5: Response from Authorization Server – Received PRT. .. 29

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

8

D3.2: End-to-End Security Framework

Table 6: Comparison of service mesh solutions as shown in [13]. ... 33

Table 7: Istio authentication policy example. ... 44

Table 8: Istio authorization policy example. ... 44

Table 9: Overview of vulnerability detection/mitigation tools. ... 45

Table 10: End-to-End Security Framework docker-compose configuration. 46

Table 11: Istio policy configuration. ... 47

Table 12: End-to-End Security Framework cloud resource requirements. 49

Table 13: Keycloak REST APIs. .. 50

Table 14: Common Istio deployment connection procedure. ... 52

Table 15: Security guidelines and recommendations. .. 54

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

9

D3.2: End-to-End Security Framework

Abbreviation and Acronyms

Acronym Description

ABAC Attribute-Based Access Control

ACL Access Control List

ACM Access Control Mechanism

AI Artificial Intelligence

API Application Programming Interface

AS Authorization Server

BMC Baseboard Management Controller

CA Certificate Authority

CBAC Context-Based Access Control

CIA Confidentiality, Integrity and Availability

CLI Command Line Interface

CSR Certificate Signing Request

CVE Common Vulnerabilities and Exposures

D Deliverable

DR Disaster Recovery

GUI Graphical User Interface

HA High Availability

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure as a Service

IAM Identity And Access Management

ID Identifier

IEC International Electrotechnical Commission

IoT Internet of Things

IP Internet Protocol

ISO International Organization for Standardization

JSON JavaScript Object Notation

JWT JSON Web Token

MQTT Message Queue Telemetry Transport

ML Machine Learning

NFC Near Field Communication

OS Operating System

PaaS Platform as a Service

PCT Persisted Claims Token

PEP Policy Enforcement Point

PKI Public Key Infrastructure

RBAC Role-Based Access Control

RDBMS Relational DataBase Management System

REST Representational State Transfer

RO Resource owner

RPT Relying Party Token

SaaS Software as a Service

SE Secure Element

SQL Structured Query Language

SSH Secure Shell

SSL Secure Sockets Layer

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

10

D3.2: End-to-End Security Framework

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TLS Transport Layer Security

TPM Trusted Platform Module

UBAC User-Based Access Control

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

WiFi Wireless Fidelity

WP Work Package

XSS Cross-Site Scripting

YAML YAML Ain't Markup Language

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

11

D3.2: End-to-End Security Framework

Executive Summary

The D3.2 – End-to-End Security Framework provides a description of the initial version of the MATRYCS

End-to-End Security Framework, spanning the complete MATRYCS architecture (MATRYCS-

GOVERNANCE, MATRYCS-PROCESSING and MATRYCS-ANALYTICS), according with the MATRYCS high-

level reference architecture defined in the deliverable D2.3 – MATRYCS Reference Architecture for

Buildings Data v1.0.

This document, accompanying the 1st technology releases of other MAYTRYCS layers and modules

reported in D3.1 – MATRYCS-GOVERNANCE (1st technology release), D4.1 - MATRYCS-PROCESSING (1st

technology release), and D4.4 - MATRYCS-ANALYTICS and Open Cloud-based Data Analytics Toolbox (1st

technology release), is mainly focused on background overview and design in addition to preliminary

evaluation of the envisaged technological solutions for the End-to-End Security Framework. It reports

on the activities up to M12 in WP3 – Data services & Semantic Enrichment Layer (MATRYCS-

GOVERNANCE), specifically task 3.6 – End-to-End Security Framework.

This deliverable surveys and provides sufficient background of the relevant privacy and security aspects

in information systems for application in the MATRYCS project. Moreover, it reports on the design and

initial implementation of the MATRYCS End-to-End Security Framework while also presenting and

valuating the related composition of envisaged technology solutions to be adopted. Finally, the

deliverable outlines the integration aspects of the End-to-End Security Framework with MATRYCS

modules and assets, also considering a set of security and privacy guidelines to be adopted throughout

the MATRYCS DevSecOps process.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

12

D3.2: End-to-End Security Framework

1 Introduction

The MATRYCS project aims to provide a comprehensive, state-of-the-art AI-powered framework for real-

life applications, focusing on building energy services with respect to data processing, analytics,

aggregation, and visualization. With big data and information/communication technology at the heart

of the project implementation and being a key enabler, sufficient measures must be applied to ensure

apt security standards throughout the complete development and operational phases. To this end, the

MATRYCS project proposes the End-to-End Security Framework, a holistic vertical security layer

encompassing the MATRYCS architecture.

1.1 Purpose of the Document

The purpose of D3.2: End-to-End Security Framework is to provide sufficient background as well as

guidelines to the MATRYCS consortium – especially to MATRYCS modules and services developers – on

security aspects in information systems to be applied in the MATRYCS project and to report on the

current implementation of the related End-to-End Security Framework module, developed as a part of

the Data services & Semantic Enrichment Layer (MATRYCS-GOVERNANCE). To this end, the deliverable

reports on the outcomes and activities of T3.6 End-to-end security framework as a part of WP3 Data

services & Semantic Enrichment Layer (MATRYCS-GOVERNANCE).

The obtained outcomes and carried out activities heretofore aimed to provide a comprehensive study

of the state-of-the-art concepts and approaches in modern information systems, focusing on both cloud

as well as the so-called edge environments. In addition, the work has concentrated on designing and

valuating a composition of envisaged technology solutions to be adopted as a part of the MATRYCS

End-to-End Security Framework, also highlighting the interactions with various MATRYCS modules

through a set of security services and guidelines.

1.2 Structure of the Document

The D3.2: End-to-End Security Framework is organized as follows:

 In chapter 1, the introduction, purpose of the document, and related structure is presented.

 In chapter 2, an overview of the security in information systems is given, focusing on the root

of trust, end-to-end security, identity and access management, and service-level security

concepts to be utilized in the MATYCS project as a part of the project’s security vertical.

 In chapter 3, the design, technologies, and the initial implementation of the End-to-End

Security Framework developed as a part of the MATRYCS-GOVERNANCE layer is presented.

 In chapter 4, the envisioned End-to-End Security Framework solution integration in the

MATRYCS ecosystem is outlined.

 In chapter 5, the security recommendations and guidelines for ensuring compliance with the

security standards are provided.

 Finally, chapter 6 concludes the deliverable and outlines the future steps.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

13

D3.2: End-to-End Security Framework

2 Security in Information Systems

The ISO/IEC 27000:2018 standard [1] defines information security as “preservation of confidentiality,

integrity and availability of information,” where, additionally, “other properties, such as authenticity,

accountability, non-repudiation, and reliability can also be involved.” A somewhat related concept to

security is privacy; whereas privacy is more concerned with rights, control and usage of information,

security on the other hand imposes the safeguarding of information. Information security generally

considers a balanced protection on principles also known as a CIA triad [2]:

 Confidentiality: Information must be protected and not disclosed to or accessible by

any unauthorized entities.

 Integrity: Information must maintain its accuracy, consistency, and completeness

throughout its whole lifecycle.

 Availability: Information must be accessible when required, possible availability

disruptions must be prevented.

Ensuring security is typically an iterative process dealing with the identification and mitigation of risks.

To prevent confidentiality, integrity, or availability compromise, various security controls on

administrative, logical, and physical bases must be in place. The information should be secured both at

rest and in transit where, as information normally moves through numerous information systems,

security is required at each step of the processing pipeline, thus motivating the use of end-to-end

security approaches. The last should hold even more so in modern complex distributed system

deployment scenarios, shifting towards a mixture of cloud, fog, and edge paradigms with a diverse set

of ecosystems.

Information systems must implement apt security measures and mechanisms adhering to the

established cybersecurity standards. The security generally follows a multi-layered approach based on

two main principles:

 Access control: Access to data or other secured resources is regulated using access

control policies with specified roles and responsibilities supplementary to appropriate

identification, authentication, and authorization mechanisms. Logging systems in

relation to access control are normally employed for security auditing.

 Cryptography: All data handling poses a certain risk of data leakage, whether moving

data from one location to another (data in transit) or while data is stored (data at rest).

Encryption is a process of transforming plaintext data into a ciphertext that is intelligible

to an unauthorized third party.

Establishing a secure access-controlled environment fundamentally depends on the capacity to reliably

identify and prove the identity of participating entities [3]. In modern systems, entities normally rely on

the public key infrastructure (PKI) [4] and identification/authentication using complementary certificates

and cryptographic keys. For this, secure cryptographic operations in addition to secure key storage must

be implemented also depending on the so-called root of trust, enabling a chain of implicitly trusted

functions from hardware as a basis through all the layers up to any applications in the execution

environment.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

14

D3.2: End-to-End Security Framework

2.1 Root of Trust

Information systems, inclusive of the related hardware and software, are prone to remote as well as

physical attacks. This is especially true with the growing number of devices, also considering the internet

of things (IoT), and rising interconnectivity of assets. With some devices being constrained and

consequently lacking robust security frameworks, security in IoT has been a surging issue [5] with various

efforts being made towards making IoT secure by design. The ubiquity of devices also presents a

complex problem not only because of the sheer magnitude of compromise points, but also due to

physical accessibility of hardware – particularly on unsecured or public premises. A compromised asset

may be exploited for data leakage/alteration, coordinated botnet attacks or as a gateway enabling other

attack vectors. Such compromises are largely mitigated by establishing trust; for this, any exchange

should exhibit legitimacy and confidentiality, thus creating a chain of trust not only between assets, but

also within a single asset – on software and hardware level.

Figure 1: Multi-layered structure of trust.

Cryptography in computer science provides various approaches for identification, authentication, and

encryption, enabling secured authenticated communication and trust establishment in addition to

providing methods for tampering/repudiation attack prevention. However, modern cryptographic

techniques heavily rely on the safety of cryptographic operations execution and the use of secrets, which

must be securely stored and protected. This is solved by instituting the root of trust, a foundation for

supporting system, software and data verification, integrity, and confidentiality through enabling secure

cryptographic storage and operations. Trust exhibits a multi-layered structure, where the groundwork

and bottom-most layer (i.e., the root of trust) are normally represented by the hardware and each

consecutive layer relies on the previous one with respect to security and trust, as illustrated in Figure 1

for a generic MATRYCS application execution environment. Hardware trust is generally a prerequisite for

enabling a secure tamper-resistant asset’s booting procedure using authentic firmware. On top of that,

the operating system, hypervisor and associated virtual machines are executed, building upon and

extending the established hardware trust. At the very top, applications depending on storage,

computation, and ML models are ran, utilizing the trusted secure environment ascertained by lower

levels. A compromise at any level of trust vertical implies that all higher levels are or may also be

compromised.

In principle, the root of trust may be implemented on the software or hardware level. Whereas the

hardware approach is preferred due to being the entry point of execution and its resilience to malware,

the software approach does provide additional flexibility. The root of trust is normally implemented and

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

15

D3.2: End-to-End Security Framework

based on:

 Trusted Platform Module (TPM): An international standard specifying discrete,

integrated, firmware and software variants of a secure cryptographic module.

 Secure Element (SE): A tamper-resistant hardware platform enabling secure data

storage and limited secure application execution.

 Trusted Execution Environment (TEE): A secure isolated environment for executing

applications with data and application integrity/confidentiality guarantee.

2.2 End-to-End Security

Due to the increased use of sensors and actuators embedded in everyday objects and increased privacy

and security awareness on how and where the data is generated and consumed, security frameworks

are inherently evolving. Modern end-to-end security for distributed computing, edge nodes, and edge

systems have a physical scope and a digital one as depicted in Figure 2. Focusing on physical security, we

identify node level and site level security. We refer to a node as an entity that performs computation

from constrained devices embedded in objects to mainframe computers in private datacentres while we

refer to a site as a more complex environment consisting of one or more interconnected nodes on a well

delimited premise such as a factory floor. For the case of cloud computing systems, the taxonomy of

physical security mechanisms provided in ref. [6], identifies retina fingerprint, palmprint and face

recognition as authentication mechanisms.

Figure 2: Scope of modern end-to-end security for distributed computing systems.

With respect to digital security, we identify communications, storage, computation, models, and

application-level security that is also dependent on the used technology stacks. While in legacy

brownfield computing systems, the physical interconnections reflect the logical ones, in modern systems,

due to virtualization technologies this may not be the case. Several logical systems may reside on a

physical one. Furthermore, the technology stack used to realize distributes computing is different

between cloud and edge as also represented on the right-hand side of Figure 2. The technology, policies

and practices in place must cover the entire scope of the end-to-end security aspects of modern

distributed computing systems. For the case of cloud services, the taxonomy in [6] identifies three classes

of digital security mechanisms suitable for authentication: credentials (i.e., passwords and SSH keys),

multifactor (chip and pin, one time password, captchas, and patterns) and SSO and federation (enterprise

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

16

D3.2: End-to-End Security Framework

SSO, Open ID, SAML and OAuth).

Edge computing is a paradigm in which computation and data are placed closer to the stakeholder.

Assume a digitized farm that monitors its livestock and uses this information to care for the animals. The

measured data needs to be sent and possibly stored on a computing infrastructure and presented to

the decision maker in a useful form. The computing infrastructure can be placed on the premises of the

farm where the data from the sensors is transmitted to a gateway that pushes it to a database available

on the computing infrastructure set-up on premises. The data processing and visualization services also

run on the same infrastructure and the stakeholder (i.e., farm manager) can access information through

fixed or portable connected devices such as phone or tabled using the local networks such as WiFi. In

this example we are talking about an on-premises edge computing infrastructure. An alternative case

would be when the computing infrastructure is placed outside the premises of the stakeholder at the

edge of the connectivity service provider (i.e., telco operator or cable operator).

Unlike edge computing, in the case of the cloud, the computing and data storage are taking place in the

few locations where the cloud provider deployed their infrastructure. As large cloud providers tend to

have server farms in 2-3 locations per continent, the data and services are located far from the

stakeholder. While cloud computing services are easy to use, optimized for a wide range of applications,

have strict security and performance requirements and are ready to use, they physically and virtually

displace the data from the stakeholder and raise risks in case of major events or attacks while also being

subject to changing pricing plans.

In its attempt to expose the data at the edge producer level, MATRYCS will rely on an architectural layer

referred to as MATRYCS-GOVERNANCE, where data at the building-edge layer will be made available in

a privacy-aware manner – considering, among others, data anonymization and cleaning – for the storage

and services run in a centralised cloud. This represents a hybrid approach where only well controlled and

curated part of the data is stored in the cloud while the rest remains only accessible at the edge. This

approach is expected to increase trust in data sharing among stakeholders and subsequently increase

models’ accuracy by raising the amounts of data available for AI-based learning.

Figure 3: Conventional data governance chain.

Figure 3 depicts the conventional data governance chain in Europe where data generated at the building

level can be shared in a raw or aggregated form up the chain to various decision-making stakeholders

at district, city, region, nation, or European level for informing behaviour and policies and enabling

increased efficiency. The sharing is compliant with data governance rules and laws at the respective

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

17

D3.2: End-to-End Security Framework

levels. A more in-depth overview of the data flow at the different data governance levels is provided in

Figure 4. The orange circles in the figure represent the flow of data under various levels of governance

and the flow of shared raw or aggregated data across the levels. At each of the data governance levels

described in Figure 4, the data is passed through a complex information and technology stack formed

mainly of hardware, virtualization, computation, communication technologies and application/service

technologies. A more fine-grained layering is provided by the Cloud Native Computing Foundation in

the Cloud Native Landscape Map1.

Towards the building level, the technology stack may take more the flavour of edge computing while

towards the European level it may take a cloud computing flavour. At each of the levels of the technology

stack there are possible security threats. To name only a few, at the hardware level there are digital key

theft and hardware trojan threats, at the virtualization level there are data breach and resource hijacking

threats, at the computation level there are data breach or poisoning as well as model extraction threats,

at the communication level there are man-in-the-middle and eavesdropping threats while at the service

and application levels there are intrusion and cross-site scripting threats as very briefly also summarized

in Figure 5. Extensive and in-depth studies of threats and mitigation solutions in cloud stacks can be

found in ref. [6]–[8] while for data processing and machine learning pipelines in ref. [9], [10].

Figure 4: Data flow at different data governance levels.

1 https://landscape.cncf.io

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

18

D3.2: End-to-End Security Framework

Figure 5: Security threats at different layers of the edge/cloud computing stack.

There is a wide range of tools and components available for realizing edge and cloud stacks for data

processing and management at various levels of data governance. In Table 1 we summarize a few at each

level noticing that the ones dedicated for edge are lighter weight and more resource aware.

Table 1: Example technologies for realizing edge and cloud IT stacks.

 Edge Cloud

App/Service Flutter React, Angular, Grafana, NodeJS,

Django

Communication LoraWAN, WiFi, BT, SigFox, NB-IoT ETH, HTTP, MQTT, Kafka

Computation OpenEMS, TinyML, Tensorflow Lite Kafka, Elasticsearch, Hadoop, Spark,

Hive, Tensorflow, Keras

Virtualization KVM, Trango, Xen, K3S, CodeZero, Docker VMware, Kubernetes, OpenStack,

Ceph, libvirt, Eucalyptus

Hardware RPi, BeagleBone, Intel Nuc, NVIDIA Jetson Intel Xeon, Kunpeng, Ascend, NVIDIA

Focusing on the software frameworks of edge and cloud computing systems, we further discuss security

aspects identified by the community and review the security features of existing open-source systems.

2.2.1 Edge Environments

In ref. [11], the authors identify four deployment models of an edge computing environments: cloudlet,

• authentication and authorization

• cross-site scriptingApps/Services

• eavesdropping

• man in the middle
Communication

• data breach or poisoning

• model steal or extractionComputation

•data confidentiality breach

•uncontrolled resource utilization
Virtualization

• digital key theft

• hardware trojansHardware

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

19

D3.2: End-to-End Security Framework

fog, multi-access edge and IoT. The Industrial Internet of Things Consortium2 introduced a framework

that covers the following deployment models:

 Simple edge deployment: “An edge node is an assembly of hardware and software

components that implement edge functions. Such a standalone edge computing node

can be installed anywhere in the edge system to provide computing, networking, and

storage services close to data producers or consumers”

 More complex deployment: “In a slightly more complex model of edge deployment,

multiple logical edge nodes may be instantiated in a single physical edge node. They

share the same hardware platform but are fully isolated from each other. This

deployment model is modular, scalable, and efficient. It is the primary support

mechanism for multi-tenancy.”

 Extremely complex model: “A logical edge computing node is assembled from the one

or more physical or logical edge nodes. One version of this merges the capabilities of

multiple physical edge computing nodes, which may be peers on the same or adjacent

layer(s), to handle a computation, networking, or storage load heavier than a single

physical edge node can manage. In a variation, multiple physical edge nodes are

grouped into a fault-tolerant cluster, so that a failure in one of the edge nodes will be

mitigated by its peers.”

The same consortium also introduced a security framework3 focusing on assurance, security, safety,

reliability, resilience, privacy, and trust. The corresponding definitions of the key characteristics of the

framework as presented in the document are:

 “Assurance requires the collection and analysis of evidence that supports the design,

construction, deployment and test of the system, and its activities in operation.”

 “Security is the condition of the system being protected from unintended or unauthorized

access, change or destruction.”

 “Safety is the condition of the system operating without causing unacceptable risk of

physical injury or damage to the health of people, either directly or indirectly, as a result of

damage to property or to the environment.”

 “Reliability is the ability of a system or component to perform its required functions under

stated conditions for a specified period of time.”

 “Resilience is the property of a system that behaves in a manner to avoid, absorb and

manage dynamic adversarial conditions while completing the assigned missions, and

reconstitute the operational capabilities after causalities.”

 “Privacy is the right of an individual or group to control or influence what information

related to them may be collected, processed, and stored and by whom, and to whom that

information may be disclosed.”

The document provides further guidelines on how to develop such a security framework for all the layers

of the edge stack represented in Figure 2 and Figure 5. In Table 2, we overview selected existing open-

2 https://www.iiconsortium.org

3 https://www.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB-3.pdf

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

20

D3.2: End-to-End Security Framework

source edge frameworks with respect to their current security capabilities. As with the case of cloud, also

the numbers of available frameworks4 and tools is relatively large, therefore our selection is based on

their maturity and completeness.

Table 2: Security aspects analysis of existing edge frameworks.

Framework Description Supported security mechanisms

LF EDGE5 Unifies open-source edge frameworks

across IoT, telco, cloud, and enterprise

edge markers at the infrastructure and at

the application level.

 HTTPS Encryption

 Authentication

 Password rotation

 Authorization

 Certificates

EdgeX6 Flexible and scalable open-source

framework under the LF Edge umbrella

that sends and receives data from

enterprise, cloud and on-premises

applications and enables AI at the edge.

 Secret creation, store, and

retrieve (password, cert, access

key etc.)

 User account creation with

optional either OAuth2 or JWT

authentication

 User account with arbitrary

Access Control List groups (ACL)

 Data encryption

 Secure Secret Storage, Dynamic

Secrets

StarlingX7 StarlingX provides an OpenStack base

layer with compute, storage, and

networking capabilities, along with

configuration and other management

functions.

 TLS support on all external

interfaces

 Kubernetes service accounts and

RBAC policies for authentication

and authorization of Kubernetes

API / CLI / GUI

 Encryption of Kubernetes Secret

Data at Rest

 Keystone authentication and

authorization of StarlingX API /

CLI / GUI

4 https://awesomeopensource.com/projects/edge-computing

5 https://www.lfedge.org/projects/fledge/

6 https://www.edgexfoundry.org

7 https://www.starlingx.io

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

21

D3.2: End-to-End Security Framework

 Barbican is used to securely store

secrets such as BMC user

passwords

 Networking policies / Firewalls on

external APIs

 UEFI secureboot

 Signed software updates

yocto8 The Yocto project can be used to create

tailored Linux images for embedded and

IoT devices, or anywhere a customized

Linux OS is needed.

 Configurable

 Linux based

2.2.2 Cloud Environments

Cloud environments are formed by a complex amalgamation of technologies from the available ones

presented in the Cloud Native Landscape Map. There are three common services models for cloud

environments as also illustrated in Figure 6 and discussed in [12]:

 Software as a Service (SaaS) that provide applications (usually a Web application) to users.

The implementation details of the application or hosting infrastructure is transparent to the

users. Modern SaaS environment are developed so-called service meshes. A service mesh

can be described as an infrastructure layer that is responsible for the communication

between services [13]. The major providers of service mesh for SaaS are Istio, Linkerd and

Consul as identified in ref. [14]. All three frameworks can be seen as security enhancements

to Kubernetes that is otherwise a workload orchestration tool and does not support most

of the security measures for communication between microservices that are working inside

of Kubernetes environment. However, they support also other orchestrators beyond

Kubernetes.

 Platform as a Service (PaaS) provides development and deployment platforms, a set of

APIs, libraries, programming languages and associated tools used for application creation.

The users in this case tend to be application developers to whom details about the hosting

infrastructure are abstracted.

8 https://www.yoctoproject.org

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

22

D3.2: End-to-End Security Framework

 Infrastructure as a Service (IaaS) provides the low-level infrastructure to create

customized application environments or even higher-level products (which might be PaaS

or SaaS). Here the users have control over the infrastructure and are able to develop their

own platform and applications on top of it. The most prominent open-source enablers of

this model are Nimbus, Eucalyptus, OpenStack, CloudStack with OpenStack being probably

the most popular choice. Detailed feature based comparisons of these frameworks are

available in ref. [15]–[17]. According to ref. [17], at the time of writing, Eucalyptus and

OpenStack offered virtual machine isolation, user security features and system security.

With respect to the deployment models for these environments, there are three main options, i.e.,

private, public and community while also combinations of these are possible, also referred to as hybrid.

The Cloud Security Alliance9 is an organization that provides periodic security guidelines related to

securing various aspects of the cloud, i.e., microservices [18], and implementing security policies such as

Zero-trust, a security model that treats all network traffic as hostile, even if it is inside the perimeter. The

recommendations of the Cloud Security Alliance are generic and technology/provider agnostic,

therefore there are no specific technology recommendations.

Figure 6: Service delivery models as shown in [19].

The MATRYCS project aims to deliver a SaaS cloud therefore for which the authors of [20] identified the

following challenges:

i. Data security that they further break down to data storage security, data access control,

data backup and recovery, data integrity and data transfer security.

9 https://cloudsecurityalliance.org/research/working-groups/containerization/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

23

D3.2: End-to-End Security Framework

ii. Application security that is further being broken down to software design flaws, user

interface and web technologies, web services and malware.

iii. Software-as-a-Service Security that is broken down in vulnerabilities of virtual machine,

vulnerabilities in virtual networks, service communication vulnerabilities.

At the time of writing of [20], artificial intelligence and machine learning services were not yet such an

integral part of SaaS platforms as they are now. Training and delivering AI models extends the Data

security challenge identified by [20] with corrupting model training or operational data, the Application

Security challenge with stealing the outputs of the models and the Software-as-a-Service Deployment

Security challenge with model theft and swapping as discussed in more detail in [9].

2.3 Identity and Access Management

Identity and access management (IAM) in cloud environment is a crucial concern for the acceptance of

cloud-based services. IAM systems perform different operations for providing security in the cloud

environment that include authentication, authorization, and provisioning of storage and verification. IAM

system guarantees security of identities and attributes of cloud users by ensuring that the right persons

are allowed in the cloud systems [6]. They are capable of performing functions like, administration,

discovery, maintenance, policy enforcement, management, information exchange and authentication

and they are used to authenticate users, devices or services and to grant or deny rights to access data

and other system resources.

As the WWW triggered a revolution in software development where, and as noticed in ref. [21] “The

emergence of the software-as-a-service model, Internet-based developer forums (e.g., Stack Overflow,

https://stackoverflow.com), and open source software repositories (e.g., GitHub, https://github.com)

have enabled an approach in which people routinely trawl online for ready-made solutions for all kinds

of problems; the discovered libraries and code snippets are included in applications with little

consideration or knowledge about their technical quality or details.”. According to the authors, such

development is referred to as opportunistic design, opportunistic reuse, ad hoc reuse, scavenging,

software mashups, mashware, or sometimes even frankensteining. The overwhelming choice of tools

and libraries also affect the security of the systems they are integrated in. The authors of [22] noticed

that “the variety of approaches to solve IAM makes it hard to compare or even combine them” thus “it

is increasingly difficult to provide secure implementations and configurations”.

Some of the available tools for realizing IAM for SaaS are Keycloak, Auth0, Okta, FreeIPA, Dex, and Vault.

2.3.1 OAuth2 Protocol

OAuth210 is an authorization framework that enables applications – such as Facebook, GitHub and

DigitalOcean – to obtain limited access to user accounts on an HTTP service. It works by delegating user

authentication to the service that hosts and authorizing third party applications to access that user

account. OAuth2 provides authorization flows for web and desktop applications as well as mobile

10 https://oauth.net/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

24

D3.2: End-to-End Security Framework

devices. OAuth2 protocol defines 4 roles:

 Resource Owner: The Resource owner is the user who authorizes an application to

access their account. The application’s access to the user’s account is limited to the scope

of the authorization granted (e.g., read or write access)

 Client: The client is the application that wants to access the user’s account. Before it may

do so, it must be authorized by the user, and the authorization must be validated by the

API.

 Resource Server: The resource server hosts the protected user accounts.

 Authorization Server: The Authorization Server verifies the identity of the user then

issues access tokens to the application.

The Figure 7 depicts what OAuth2 roles are and how they interact with each other, as described in the

following:

1. The application requests authorization to access service resources from the user.

2. If the user authorized the request, the application receives an authorization grant.

3. The application requests an access token from the authorization server (API) by presenting

authentication of its own identity, and the authorization grant

4. If the application identity is authenticated and the authorization grant is valid, the

authorization server (API) issues an access token to the application. Authorization is

complete.

5. The application requests the resource from the resource server and present the access token

for the authentication.

6. If the access token is valid, the resource server (API) serves the resource to the application.

Figure 7: OAuth2 protocol flow.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

25

D3.2: End-to-End Security Framework

Before using OAuth2 with an application, the application should be registered with the service. This is

done through a registration form in the developer of API portion of the service’s website, where

Application Name, Application Website and the Redirect UI should be provided. The Redirect URI is

where the service will redirect the user after authorization of the application and therefore the part of

the application will handle authorization codes or access tokens.

Once the application is registered, the service will issue client credentials in the form of a client identifier

and a client secret. The client ID is a publicly exposed string that is used by the service API to identify

the application and is also used to build authorization URLs that are presented to users. The Client Secret

is used to authenticate the identity of the application to the service API when the application requests

to access a user’s account and must be kept private between the application and the API.

In the OAuth2 Protocol Flow outlined previously, the first four steps cover obtaining an authorization

grant and access token. The authorization grant type depends on the method used by the application

to request authorization, and the grant types supported by the API. OAuth2 defines three primary types,

each of which is useful in different cases:

 Authorization Code: It is the most commonly used grant type, and it is optimized for

server-side Applications, where source code is not publicly exposed, and Client Secret

confidentiality can be maintained.

 Client Credentials: Used with Applications that have API access. This Grant type

provides an application a way to access its own service account. Examples of when this

might be useful include if an application wants to update its registered description or

redirect URI, or access other data stored in its service account via the API.

 Device Code: Used for devices that lack browsers or have input limitations. The purpose

of this grant type is to make easier for users to authorize applications more easily on

such devices to access their accounts. Examples of when this might be useful include if

a user want to sign in into a video streaming application on a device that doesn’t have

a typical keyboard input.

2.3.2 UMA 2 Protocol

In the context of software systems, User-Managed Access (UMA 2 OR UMA 2.0) is a standard [23] that

aims to strengthen data privacy based on the well-known privacy by design principles. In technical terms,

UMA 2 is a party-to-party authorization protocol based on the OAuth2 authorization framework. In order

to understand better how UMA 2 works, a common privacy dilemma will be used to explore this topic

in detail (see Figure 8). Alice maintains an online bank account at Capital Bank, and she has granted the

following parties to access her online bank account:

 Bob – Alice’s spouse,

 Carol – Alice’s account,

 NFC based mobile payment application.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

26

D3.2: End-to-End Security Framework

Each party above accesses Alice’s online account for different purposes. For example, Carol only requires

read-only access to account data while the mobile application should have the privilege to perform

payment transactions. Capital Bank has facilitated Alice to grant the above privileges to each party via

an online banking application. This granting process is technically known as party-to-party authorization

because Alice grants certain access to another specific party to access her bank account.

Figure 8: UMA 2 example.

In the context of UMA 2, Alice (who is the account owner) is known as Resource Owner (RO). The third

parties that have access to Alice’s bank account are known as Relying Parties (RP). Applications used

from Relying Parties to access Alice’s account are known as Clients. The entity responsible for the

generation of various tokens and tickets, the RO and third-party authentication and access policy

evaluation is known as the Authorization Server (AS). Generally, both the AS and RS belong to the same

organization or there should be a strong trust relationship between the organization that own the AS

and RS functions. Furthermore, Alice can define authorization policies. For example, Carol (the

accountant) can only view account data but cannot perform any transactions, while Bib can perform

transactions up to 1000 Euros. UMA 2 does not define the right approach for authorization policies.

2.3.2.1 UMA 2 Flow

Step 1 – Client Attempts to Access a Protected Resource

Let’s assume that Bob is trying to check the balance of Alice’s account on Capital Bank using an

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

27

D3.2: End-to-End Security Framework

application installed on his mobile phone. As depicted in Figure 9, the application sends an HTTP request

to the Resource Server during this initial step, requesting the account balance without any security

tokens.

Figure 9: Client attempts to access a protected resource.

In response the Resource server sends the client HTTP 401 (Unauthorized) status code along with the

address URL of the Authorization Server and a special token that is known as the permission ticket (PT)

– Table 3.

Table 3: Response received from Resource Server – 401.

HTTP/1.1 401 Unauthorized

WWW-Authenticate: UMA realm=”example”,

as_uri=”https”//as.example.com”

ticket=”016f84e8-f9b9-11e0-bd6f-0021cc6004de”

The value WWW-Authenticate header is set to value “UMA”, which indicates that the particular resource

is protected using UMA 2. The value of attribute as_uri indicates the URL of the AS where the client

should reach for further interactions to get an access token. The value of “ticket” attribute contains the

permission ticket for this particular resource access interaction by this particular client on behalf of a

specific relying party.

Step 2 – Client Interacts with Authorization Server (AS) to get an Access Token

After processing the response message, the client could realize that it has to possess an access token in

order to access the above resource and that it has to use UMA 2 protocol to interact with the AS.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

28

D3.2: End-to-End Security Framework

Figure 10: Client Interacts with AS to get an Access Token.

In this step, Figure 10, the Client makes an OAuth2 token to request to the token endpoint of the AS

along with the PT – Table 4. In this OAuth2 request the client should use the value

“urn:ietf:params:oauth:grant-type:uma-icket” as the value of grant type parameter. Other than the UMA

2 grant type value and UMA 2 defined ticket parameter, all other parameters are identical to the standard

OAuth2 parameters.

Table 4: Request for Protection Token.

POST /token HTTP/1.1

Host: as.example.com

Authorizatiokn: Basic jwfLG53^sad$#f

….

grant_type= urn:ietf:params:oauth:grant-type:uma-icket&ticket=

016f84e8-f9b9-11e0-bd6f-0021cc6004de”

Additionally, we have to make the following assumptions about the client:

 The client has already registered with the AS and obtained the OAuth2 client credentials

(client_id and client_secret) from the AS. To achieve this task, it is possible to use another

OAuth2-related specification called OAuth2 Dynamic Client Registration Protocol, which

defines a RESTfull API on the AS to facilitate client registration or any other approach

supported by the particular authorization server.

 The client processes knowledge about the configuration of AS such as supported

authentication mechanisms, supported grant types and endpoint URLs.

Upon receiving the OAuth2 request the AS carries out the following procedure before relying to the

client:

 Authenticate the client and validate the request message according to both OAuth2 and

UMA 2 specifications.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

29

D3.2: End-to-End Security Framework

 Authenticate the Relying Party by redirecting the RP to the authentication endpoint of AS.

However, the underlying authentication mechanism is out of the scope of the UMA 2

standard.

 Upon successful authentication, the AS may try to gather claims from the RP interactively.

 Evaluate authorization policies in the context of authenticated RP, requested resources,

scopes and some other criteria. Once all of the above checks are completed AS returns an

access token (Table 5). According to UMA 2 protocol, this access token is known as the

Relying Party Token (RPT).

Table 5: Response from Authorization Server – Received PRT.

HTTP/1.1 200 OK

Content-Type: application/json

….

{

 “access_token”: “ZWRjb25fhfc2F2ala5Zzwt56fd”

 “token_type”: “Bearer”,

 “pct”: “c2F2ZWRjb25Zzw50”

}

In addition to the RPT, the Authorization Server may return the following tokens as well:

 Refresh token: Same as the refresh token used in OAuth2, the purpose is to generate

an active RPT by only providing this refresh token without repeating the whole token

generation process.

 Persisted Claims Token (PCT): An optional reference handle that represents the claims

gathered during the above-mentioned claim gathering process. The client can send the

PCT token when it sends the UMA 2 token request next time to skip claim gathering

steps.

Step 3 – Client Attempts to Access a Protected Resource by Sending RPT to Resource Server

This step is similar to step 1. The only addition here is that the client sends the RPT value along with the

resource access request through the Authorization HTTP header, Figure 11.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

30

D3.2: End-to-End Security Framework

Figure 11: Client attempts to access a Protected Resource by sending the RPT to AS.

Once the Resource Server receives a request similar to the above one, it extracts the access token (RPT)

and validates it. In the case of token validation, the RS can interact with the Authorization Server via the

OAuth2 introspection endpoint. After this token gets validated, the AS returns the requested resource

to the client. In most practical cases, it’s recommended to cache the result of the token Introspection

call to improve the performance of the business activity.

2.3.3 UMA 2 and OAuth2: The Difference

OAuth2 is an access delegation protocol that facilitates third-party applications to access protected

resources on behalf of the resource owner (RO) using a temporary access token issued by an AS with

the resource owner’s approval. Generally, OAuth2 clients access protected resources on behalf of the

resource owner (RO), not on their own or representing another party, as shown in Figure 12. This is why

OAuth2 is usually known as an access delegation protocol. In contrast to OAuth2, UMA 2 allows resource

owners to delegate access to third parties based on well-defined authorization policies maintained in

the authorization server (AS). This is the fundamental difference between OAuth2 and UMA 2. However,

in both of the cases, the client receives an access token to be used when accessing a protected resource.

OAuth2 has a concept called Scope, which can be used to denote various permissions associated with a

resource. Yet, there is no defined semantic to represent the resource in OAuth2.

Figure 12: OAuth2 authorization flow.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

31

D3.2: End-to-End Security Framework

In contrast to OAuth2, UMA 2 has introduced a notation to represent resources and an API to manage

them. UMA 2 is extended from OAuth2 by introducing a new grant type called “UMA 2.0 Grant for OAuth

2.0”. This is similar to the way that OpenId Connect protocol crafted an authentication protocol by

extending OAuth2. UMA 2 authorization flow is shown in Figure 13.

Figure 13: UMA 2 authorization flow.

2.4 Service-Level Security

Services created by different stakeholders usually need to implement more advanced security measures

by themselves. This could mean the developers should configure the whole system and sometimes even

modify the services they have already created or have to create clear guidelines for other stakeholders

to follow to reach a sufficient level of security. In this case, scalability of such a solution is under question.

To address the security of service, communication mesh can be used [24]. The mesh optimizes the

routing from one service to another, optimizing all moving parts and taking care the overloading does

not happen. When a new instance of service is introduced, the communication complexity increases and

with it also the possible new point of failure is introduced. Meshing monitors performance metrics

between service-to-service communication, enabling creating independent rules for interservice

communication to create a more efficient and reliable system. In principle, a service mesh is an

infrastructure layer that:

 Manages communication between services.

 Performs load management and monitoring.

 Applies complex routing for higher scalability.

 Provides encryption and authentication.

Developer of the services can take advantage of mesh tools to:

 configure network behaviour,

 manage traffic flow,

 configure identities through policy enforcement.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

32

D3.2: End-to-End Security Framework

A mesh is logically split into two modules: data plane and control plane [25] as shown in Figure 14. Sidecar

proxies handle traffic and apply actions on individual services. Service mesh data plane is responsible

for:

 Discovery and health monitoring of the services.

 Routing and load balancing by setting timeouts, circuit breaking settings, fails decisions,

request location configuration.

 Authentication and authorization of incoming requests, cryptographic proof of the peers,

access control policies, certified refresh intervals, white and blacklists for approving

connection and creating granular control factors like time of day.

 Encryption of requests and responses from each service.

 Circuit breaker pattern in which the service mesh can isolate unhealthy instances and bring

them back once it is warranted.

The control plane configures the data plane, and it turns all the data planes into a distributed system.

This provides flexibility to change the policies without modifying microservice code [26]. Some examples

of service mesh landscape, with main complete service mesh solutions compared in Table 6, are:

 Data planes: Linkerd, NGINX, HAProxy, Envoy, Traefik

 Control planes: Istio, Nelson, SmartStack

Figure 14: Service mesh composition.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

33

D3.2: End-to-End Security Framework

Table 6: Comparison of service mesh solutions as shown in [13].

Properties Istio Linkerd Consul

mTLS Yes Yes Yes

Certificate Management Yes Yes Yes

Authentication and

Authorization

Yes Yes Yes

TCP Yes Yes Yes

Traffic Rate Limiting Yes No Yes

Traffic testing Yes Limited No

Monitoring Yes, with

Prometheus

Yes, with

Prometheus

Yes, with

Prometheus

Distributed Tracing Yes Some Yes

Multicluster support Yes No Yes

Installation Helm and Operator Helm Helm

2.4.1 Software Vulnerabilities and Threats

Software vulnerabilities and threats play one of the most important security issues and are mostly related

to the software developer and not that much to system administrator configuration issues [27]. They

usually are introduced unintentionally even though the developer of software used all precautions

during design of the service such as:

 Buffer overflow risks (especially important for low-level languages such as C).

 Format string problems (e.g., when the input string is evaluated as a command by

application, creating intentional misbehaviour of the system).

 Race conditions on shared data.

 Shell metacharacter.

 Poor random number generation.

 Numeric errors.

 Out of bound read.

 Use after free.

 Insufficient input validation.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

34

D3.2: End-to-End Security Framework

 Code quality.

Other common weaknesses can be found in the Common Vulnerabilities and Exposures (CVE) database

[28] maintained by non-profit organization MITRE11. Therefore, each MATRYCS module or service

developer should be aware of them when developing the solutions. Going from the creation of the

service to the deployment of the service to the specific system, another set of software vulnerabilities

needs to be addressed and precautions must be taken to eliminate them or at least minimize them as

much as possible. The most common system-related software security issues are:

 Unauthorized access to the service code and code injections, especially in the case of script

programming languages (e.g., need to compile code, code obfuscation).

 User permission, privileges, and access control (e.g., configuration oversight in the system

granting elevated access to resources that are usually protected from an application).

 Using outdated libraries and frameworks with known vulnerabilities.

 Improperly configured and badly coded APIs could lead to data leaks and exposure.

 Cross-site scripting (XSS) (e.g., to execute scripts and hijacks user session).

 Broken authentication and authorization (e.g., authentication and session management are

implemented incorrectly).

 Insecure deserialization.

 Insufficient logging and monitoring.

In information systems, an important set of issues arise from the so-called continuous obsolescence

phenomenon, which forces the developers and system administrators to constantly update or even

reinstall system parts, software, or software libraries. This happens due to the rapidly changing

technology which renders the swift updates and inter-software integration difficult. In general, such

updates are necessary for the software to continue its function, but normally do not increase the utility

of the software. To mitigate the related security problems, this must be address throughout the complete

lifecycle of software. Consequently, in practice, it is important to adhere to open/joint standards and

achieve appropriate balance between stable and new technologies, also with respect to interface control.

Many tools exist that try to identify security issues and discover possible flaws before they might be

exploited. Such tools are generally necessary for employing end-to-end secure systems/software and

are thus proposed for adoption in the MATRYCS project as a part of its security layer. The main idea of

the tools is to help developers with limited domain knowledge to perform comprehensive tests of the

system ranging from potentially dangerous files and programs, identifying version specific problems,

the configuration of the system and creating reports to the user so they can start resolving the issues.

The services with their associated attacks can be grouped into four major groups [6]:

i. Protocols and standards: The main issues are hijacking of the session, network-based

attacks, cookies issues, and transport layer security attacks (TLS). Mitigation:

a. Using secure session: with SSL authentication when performing the sensitive

operation, time out, …

b. Anti-virus: use and update regularly anti-virus software.

11 https://www.mitre.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

35

D3.2: End-to-End Security Framework

c. Anti-malware: use and update regularly anti-malware software.

ii. Web-Services: The main issues are spoofing and wrapping attacks. Mitigation:

a. Implementation of strict security policies at both sides, including web service

access control mechanisms.

iii. Web-technologies: The main issues are web sites growth infection, session attacks,

download of malware and browser vulnerabilities. Mitigation:

a. Vulnerability analysis by a skilled and well-trained person to track and resolve

network problems.

b. Preventive actions, e.g., use of the software tools that automatically analyse

the service and system before it is exposed in the real environment.

iv. Availability of Service: main issues are flooding, DoS and DDoS attacks, DNS reflection

and amplification attacks. Mitigation:

a. Regulating: regulation of request.

b. The fleet of servers: setting of high availability environment (HA) that spreads

across multiple data centres in implements disaster recovery (DR) plan.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

36

D3.2: End-to-End Security Framework

3 End-to-End Security Framework

The MATRYCS project identified a need for a vertical security layer spanning and interacting with several

building blocks of the MATRYCS architecture for enabling authentication, authorization, logging of

various events in the system and enforcement of security as well as privacy aspects. The MATRYCS End-

to-End Security Framework is thus considered a generic MATRYCS security layer, covering MATRYCS-

GOVERNANCE, MATRYCS-PROCESSING and MATRYCS-ANALYTICS (see Figure 15). Specifically, the

framework encompasses and relates to several entities in the MATRYCS architecture and deployment

scenarios: infrastructure/assets, AI/ML services with a focus on big data, MATRYCS end-users, and data.

The End-to-End Security Framework aims to secure the MATRYCS platform and its constituent

information – thus enhancing the trustfulness of the system – by applying high-level security and fine-

grained access control as well as appropriate mechanisms for maintaining and reinforcing legal and

security policies over MATRYCS resources. In addition to providing the means of encrypted inter-service

communication, the framework considers data processing/security constraints in relation to data

encryption standards and anonymization, especially in conjunction with Data Storage, Distributed Query

Engine and Data Semantic Enrichment components.

Figure 15: End-to-End Security Framework in high-level MATRYCS architecture, as shown in

D2.3.

3.1 Design

The End-to-End Security Framework is designed as a composition of a security toolbox (interchangeably

referred to as the End-to-End Security Framework) and a practical set of security guidelines and

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

37

D3.2: End-to-End Security Framework

recommendations to be applied during the DevSecOps process (see Figure 16), thus considering the

relevant software tools while also recognizing applicable security standards, practices, and processes.

The framework is placed into an iterative context due to the inherent characteristics of the security

process; throughout the duration of the MATRYCS project, the potential security concerns will be

continuously evaluated with risk identification triggering the feedback loop and potential recalibration

of the guidelines and the related toolbox adaptations. Whereas this chapter mainly considers the security

toolbox, chapter 5 examines the framework’s proposed security guidelines and recommendations to be

adopted by the MATRYCS consortium.

Figure 16: End-to-End Security Framework composition.

The End-to-End Security Framework toolbox, a generic, extensible and pluggable multi-layered security

software toolbox, provides relevant privacy/security mechanisms with respect to anonymization,

authentication, authorization, auditing, encryption, and software vulnerabilities/flaws detection and

mitigation. It builds upon access control mechanisms with auditing capabilities as a foundation

corresponding to identification, authentication and fine-grained authorization policies. On application

level, service mesh composition for secure service provisioning and integration is employed. The

architecture of the framework toolbox is shown in Figure 17. The solution is based on four pillars, which

are described in the following: Persistent data layer, Privacy and security, Identity and access

management, and API/GUI access layer.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

38

D3.2: End-to-End Security Framework

Figure 17: MATRYCS End-to-End Security Framework architecture.

Persistent data layer

The Persistent data layer implements an isolated secure data storage for confidential and other critical

information. It should support granular specification of access and control policies in addition to

encrypted storage with data integrity protection. Maintenance of high reliability and recovery in case of

catastrophic events is required. The Persistent data layer mainly serves as a generic storage solution for

the upper layers of the End-to-End Security Framework (e.g., Identity and access management), but

could – if required – be extended to grant security storage capacities to other components. In general,

this layer should be technology-agnostic with the extensibility enabled by swapping technological

solutions.

Privacy and security

The Privacy and security module is comprised of two parts with somewhat related functionalities;

whereas the Privacy management submodule is concerned with various aspects of anonymization,

(regulatory) compliance and enforcement of privacy policies, the Security management submodule

considers the establishment and enforcement of security policies. As MATRYCS opts for a microservice

architecture, these policies mostly relate to application-level security provisioning and secure service

integration. For this, a service control plane for controlling and monitoring services and their data flows

is proposed. The plane should additionally prevent data compromise via ensuring encrypted service-to-

service communication and data encryption at rest. Moreover, this submodule should detect and

mitigate security risks in the form of vulnerabilities and flaws on an application, database, network and

system level. The Privacy and security module should therefore keep and up-to-date database of

potential software security risks. Furthermore, security and privacy standards must be considered while

also paying special attention to local, national and international legislation.

Identity and access management

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

39

D3.2: End-to-End Security Framework

The Identity and access management module is responsible for authentication, authorization, and

auditing aspects. Authentication delivers means for identification of entities and establishment of trust

between them in the system, which serves as groundwork upon which fine-grained data/service/asset

authorization policies and usage control mechanisms may be defined, applied, and enforced. The related

auditing functionality should provide a comprehensive system of event logging enabling compliance

assessment and traceability. This module should be extensible, provide sufficient programming

interfaces and comply with established authentication/authorization standards (e.g., OAuth).

API/GUI access layer

The API/GUI access layer exposes the End-to-End Security Framework functionalities to other

components and/or users. It is composed of an admin GUI, a user interface aimed at the MATRYCS

operators for enabling a more straightforward graphical overview and configuration of the security layer,

and an API component, which exposes all underlaying layers of the framework to other technological

MATRYCS components and infrastructure. The access layer should implement secure authentication,

possibly multi-factor, and authorization mechanisms being the main entry point to protected framework

areas. The API should conform to established standards and architectural styles, such as REST.

3.2 Technologies

The End-to-End Security Framework for specific parts of its architecture currently adopts several

technological components. Persistent data layer for providing internal data storage employs PostgreSQL

open-source relational database management system. Keycloak is adopted for authentication,

authorization and auditing as a part of the Identity and access management as well as Privacy

management submodules whereas Istio implements service control and monitoring plane in Security

management submodule. Security management additionally provides Vulnerabilities detection &

mitigation component. For this, several technologies are under consideration: Nikto2, W3AF, OpenVAS,

Nmap, OpenSCAP, Aircrack, and GoLismero. Finally, API/GUI access layer is implemented by each

component separately. The considered technological components are described in the rest of this

section.

3.2.1 PostgreSQL

PostgreSQL12 is an ACID-compliant open-source relational database management system (RDBMS)

employing and extending the structured query language (SQL) standard. It can be ran on all major

platforms and is extensible via add-ons as well as through feature-specific defined APIs. PostgreSQL is

highly scalable with concurrency/clustering options and includes support for internationalisation and

text search. Its features – among others – include:

 Support for various data types (primitives, structures, document-based, geometric,

custom).

 Data integrity protection through keys, constraints and locks definition.

12 https://www.postgresql.org

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

40

D3.2: End-to-End Security Framework

 High performance and concurrency using advanced indexing, query planner,

transactions, parallelization, table partitioning, transaction isolation and just-in-time (JIT)

compilation.

 High reliability and disaster recovery using write-ahead logging (WAL), replication,

point-in-time-recovery (PITR), active standbys and tablespaces.

 Multi-factor authentication, access-control system, column and row-level security.

 Extensibility through stored functions/procedures, support for procedural languages,

customizable table interfaces and add-ons.

3.2.2 Keycloak

Keycloak13 is an open-source identity and access management platform. Keycloak implements several

access control mechanisms: attribute-based access control (ABAC), role-based access control (RBAC),

user-based access control (UBAC), context-based access control (CBAC), rule-based access control, time-

based access control, and custom access control mechanisms (ACMs) though a Policy Provider Service

Provider Interface. It provides support for user federation on available standard authentication protocols,

social and single sign on as well as identity brokering. In addition to an event logging system for auditing

needs, Keycloak supplies admin management consoles. Integration is enabled through client adapter

libraries.

Keycloak is based on a set of administrative UIs and a RESTful APIs and provides the necessary means

to create permissions for resources and scopes. Associate those permissions with authorization policies

and enforce authorization decisions in applications and services. Resource servers (applications or

services serving protected resources) usually rely on some kind of information to decide if access should

be granted on a protected resource. For RESTful-based resource servers, that information is usually

obtained from a security token, usually sent as a bearer token on every request to the server. For web

applications that rely on a session to authenticate users, that information is usually stored in a user’s

session and retrieved from there for each request.

Keycloak has the capability to fuse heterogeneous environments where users are distributed across

different regions, with different local policies, using different devices and high demand for information

sharing, Keycloak Authorization Services improve the authorization capabilities by providing:

 Resource protection using fine-grained authorization policies and different access control

mechanisms.

 Centralized Resource, Permission and Policy Management.

 Centralized Policy decision point.

 REST Security based on a set of REST-based authorization services.

 Authorization workflows and User-Managed Access.

13 https://www.keycloak.org

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

41

D3.2: End-to-End Security Framework

3.2.2.1 Keycloak Authorization Process

In order to use Keycloak and enable a fine-grained authorization on applications, three main processes

are defined:

 Resource Management: A resource can be a web page, a RESTful resource, a file in a

file system and so on. Using Keycloak Administration REST APIs it is possible to secure

the resources and grant access to specific users over them. For instance, users having a

specific role will have access over a specific resource. Resources are managed through

Resource server, which are Keycloak clients for handling resources attributes and

functionalities.

 Permission and Policy Management: Once the Resource server and resources have

been defined permissions and policies are needed to define the security and access

requirements that govern the resources. Policies define the conditions that must be

satisfied to access or perform operations on resources, but they are not tied to what

they are not protecting. They are generic and can be reused to build permissions or even

more complex policies. After policies definition, the next step is to define permissions.

Permissions are coupled with the resource they are protected.

 Policy Enforcement: Involves the necessary steps to actually enforce authorization

decisions to a resource server. This is achieved by enabling a Policy Enforcement Point

that is capable of communicating with the authorization server, ask for authorization

data and control access to protected resources based on the decisions and permissions

returned by the server.

Keycloak Authorization Services consist of Token, Resource Management and Permission Management

Endpoints. The Token Endpoint is used to obtain access tokens from Keycloak and use them to access

resources protected from Resource Servers. The Resource Management Endpoint is used to create,

delete and query resources. Finally, the Permission Management REST APIs are used to issue permission

tickets that represent the permissions being requested by the clients. The Keycloak authorization process

is outlined in Figure 18.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

42

D3.2: End-to-End Security Framework

Figure 18: Keycloak authorization process.

3.2.3 Istio

Istio14 is an open-source service mesh implementation with support for multiple platforms (Azure, VMs,

…) and orchestration systems (Kubernetes, Minikube, …). It provides the following functionalities:

 automatic service discovery,

 pluggable policy layer and configuration API,

 automated metrics and logs collection,

 granular traffic control,

 load balancing,

 secure service-to-service communication.

Istio implements a data plane, a layer for controlling and monitoring inter-service communication

through a set of sidecar proxies, and a control plane for managing and monitoring the sidecar proxies.

The Istio traffic management, based on Envoy proxy model, enables control of traffic and API calls using

routing rules. Additionally, the robustness of services and network is provided through failure recovery

features and transparent service-level properties configuration, such as load balancing, circuit breakers

and failure timeouts/retries. The integral building block of traffic management is represented by the so-

called virtual services. Coupled with the destination routing rules, the virtual services enable flexible and

comprehensive configuration of service mesh request routing. The virtual services are composed of a

14 https://istio.io

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

43

D3.2: End-to-End Security Framework

set of sequential routing rules, which delineate the addressed application services.

As the service mesh operates, a multitude of events are present in the system. For this, Istio employs a

comprehensive telemetry functionality, thus providing a higher level of system observability. In principle,

Istio produces three distinct types of telemetry:

 Metrics: Aggregate monitoring of the service mesh with respect to proxy-level, service-

level, and control plane metrics. Includes information on latency, traffic, errors, and

saturation.

 Distributed traces: Monitoring and tracing of requests as they pass through the service

mesh. Istio supports several tracing backends (e.g., Datadog, Zipkin, …).

 Access logs: Service monitoring on the level of an individual workload instance,

including full metadata assigned to each request.

Finally, Istio may be extended through extensions based on WebAssembly sandboxing technology and

the related Proxy-Wasm API, which are aimed at the Istio proxy – Envoy.

3.2.3.1 Istio Security Management

Istio covers various security aspects with respect to internal and external attacks on services and data,

encompassing the complete platform, endpoints, and communication of the service mesh. It implements

the in-depth defence, zero-trust, and security-by-default concepts to enable multi-layered defence

integration on distrusted networks with no software/infrastructure modifications. Istio employs identity

management considering X.509 certificates in connection with the first-class service identity model,

which enables flexible and granular identity assignment. The periodic process applied for

certificates/keys rotation and refresh as well as identity provisioning is as follows:

i. A gRPC service is sent a certificate signing request (CSR) by Istio daemon.

ii. Istio agents generate a key pair and send the constructed CSR to Istio daemon.

iii. Istio daemon validates the CSR and signs the CSR for certificate generation.

iv. Sidecar proxy requests the certificate and related key from the Istio agent when the service

is started.

v. The Istio agent retrieves the certificate and the related key from Istio daemon and forwards

it to the sidecar proxy.

The certificates are managed by an internal Istio certificate authority (CA). Each sidecar proxy, attached

to a distinct service, implements a Policy Enforcement Point (PEP), which receives authentication and

authorization policies from the Istio configuration server. Based on that, the PEP manages inter-service

encryption and flexible access control based on access policies. The authentication in Istio is

implemented either as peer authentication, which performs service-to-service authentication based on

mutual TLS, and request authentication, which performs user request authentication based on JSON

Web Token (JWT) validation or by utilizing custom authentication providers. The authentication policies,

stored and circulated by the configuration server, are applied to each request received by a service. An

example of an authentication policy is available in Table 7. Similarly, the configuration server stores and

circulates the authentication policies among sidecar proxies. The authorization policies administer access

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

44

D3.2: End-to-End Security Framework

control to inbound sidecar proxy traffic, enabling service-to-service and user-to-service authorization

on mesh, namespace, or service level. By default, i.e., if no authorization policy is in place, all traffic is

permitted. If multiple policies are specified, they are evaluated in order with respect to the precedence.

The policy is composed of a selector specifying the target of the policy, the action which specifies the

outcome of policy evaluation, and the rules defining the action triggers. An example of an authorization

policy is available in Table 8. Finally, Istio implements auditing functionalities by exploiting sidecar proxy

telemetry extensions.

Table 7: Istio authentication policy example.

apiVersion: security.istio.io/v1beta1

kind: PeerAuthentication

metadata:

 name: MATRYCS-auth-policy1

 namespace: ns1

spec:

 selector:

 matchLabels:

 app: service1

 mtls:

 mode: STRICT

Table 8: Istio authorization policy example.

apiVersion: security.istio.io/v1beta1

kind: AuthorizationPolicy

metadata:

 name: MATRYCS-autz-policy1

 namespace: ns1

spec:

 selector:

 matchLabels:

 app: service1

action: ALLOW

 rules:

 - from:

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

45

D3.2: End-to-End Security Framework

 - source:

 notNamespaces: ["ns2"]

 to:

 - operation:

 methods: ["POST"]

3.2.4 Vulnerability Detection and Mitigation

Security management submodule in the End-to-End Security Framework aims to also provide

vulnerabilities detection and mitigation functionalities. Due to the specifics of such functionalities and

their coupling with specific software and system deployments, the appropriate tools are – at the time of

writing this deliverable – still under consideration and will be reported in the relevant upcoming

deliverable, i.e., D3.3 – MATRYCS-GOVERNANCE (2nd technology release). Whereas most tools may be

executed on any platform, different tools target various system or software components and provide

somewhat differing functionalities. Most studied vulnerabilities detection and mitigation tools, in

general, are aimed at web applications and servers with some also targeting networks, databases and

operating systems. The tools mainly provide vulnerabilities scanning, risk assessment and

countermeasures suggestion functionalities. A preliminary analysis and overview of examined open-

source technological components is presented in Table 9.

Table 9: Overview of vulnerability detection/mitigation tools.

Tool Platform Target Main functionalities

Nikto2 Any Web applications and servers Web server and configuration issues

scans, outdated versions and dangerous

files detection

W3AF Any Web applications Vulnerability and exploitation scanning,

penetration testing

OpenVAS Any Web applications and servers,

databases, operating systems,

virtual machines, networks

Vulnerability scanning, risk assessment,

countermeasures recommendations

Nmap Any Network Vulnerability scanning, network probing

OpenSCAP Linux Web applications and servers,

databases, operating systems,

virtual machines, networks

Vulnerability scanning and

measurement, risk assessment, security

measures, treat countermeasures

Aircrack Any Network (WiFi) Security assessment, network

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

46

D3.2: End-to-End Security Framework

monitoring, testing and auditing

GoLismero Any Web applications, databases,

networks

Vulnerabilities scanning, treat

countermeasures

3.3 Initial Implementation

The End-to-End Security Framework aims to adhere to the MATRYCS project’s common deployment

approach, which will enable easier integration and later deployment in target cloud-based environments

following experimentation, composition and testing on local development machines. The common

approach is based on Docker15 virtualization technology, a comprehensive set of tools employing OS-

level virtualization for software containerization. The initial framework implementation contains the

following technological components, which – based on the feedback evaluation procedure during the

duration of the project outlined in section 3.1 – might be extended or adapted: PostgreSQL, Keycloak and

Istio. Moreover, the initial implementation of the framework will be enhanced with the applicable

vulnerability detection/mitigation toolset selected. The initial docker-compose deployment

configuration, which orchestrates the End-to-End Security Framework tools instantiation and exposes

the security services on designated ports, is available in Table 10 whereas Table 11 provides the related

Istio policy configuration.

Table 10: End-to-End Security Framework docker-compose configuration.

version: "3.8"

services:

 keycloak:

 image: quay.io/keycloak/keycloak:12.0.4

 ports:

 - 8080:8080

 environment:

 - KEYCLOAK_USER=admin

 - KEYCLOAK_PASSWORD=admin

 - KEYCLOAK_IMPORT=/tmp/realm-export.json

 volumes:

 - ./docker/keycloak/realm-export.json:/tmp/realm-export.json

 postgresql:

 image: postgres:13-alpine

 ports:

15 https://www.docker.com/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

47

D3.2: End-to-End Security Framework

 - 5432:5432

 environment:

 POSTGRES_USER: "postgres"

 POSTGRES_PASSWORD: "postgres"

 POSTGRES_DB: "db"

 healthcheck:

 test: ["CMD-SHELL", "pg_isready -U $${POSTGRES_USER} -d $${POSTGRES_DB}"]

 interval: 10s

 timeout: 5s

 retries: 20

Table 11: Istio policy configuration.

- apiVersion: authentication.istio.io/v1alpha1

 kind: Policy

 metadata:

 name: customerjwt

 namespace: abc-customer

 spec:

 targets:

 - name: customer

 - name: preference

 - name: recommendation

 peers:

 - mtls: {}

 peerIsOptional: ~

 origins:

 - jwt:

 audiences:

 - customer

 issuer: 'https://sso.abc.com/auth/realms/customer'

 jwksUri: 'https://sso.abc.com/auth/realms/customer/protocol/openid-connect/certs'

 principalBinding: USE_ORIGIN

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

48

D3.2: End-to-End Security Framework

4 Security Integration in MATRYCS Ecosystem

The MATRYCS End-to-End Security Framework interacts directly or indirectly with the complete

MATRYCS ecosystem and is thus considered a generic MATRYCS security layer, covering MATRYCS-

GOVERNANCE, MATRYCS-PROCESSING, MATRYCS-ANALYTICS and other infrastructure, assets, or users.

The framework implements two different access pathways, as depicted in Figure 19:

 GUI access: The framework provides a graphical user interface for relevant

functionalities aimed at MATRYCS system administrators. Admin GUI is accessible via a

web browser to authorized users and enables monitoring/configuration of the Identity

and access management module based on Keycloak. Among the supported

functionalities are creation of user accounts and groups, definition of

authentication/authorization policies, configuration of authentication/authorization

aspects, and auditing of events in the system.

 API call: The framework exposes an interface for privacy and security services/tools via

application programming interfaces (APIs) to various modules and services in the

MATRYCS architecture. The interface is module agnostic, signifying any component,

service or even infrastructural asset may consume the security services in a unified

manner. The APIs enable programmatical access to the Identity and access management

module based on Keycloak, supporting an extended set of functionalities provided by

the GUI access with respect to authentication, authorization and auditing. Additionally,

the APIs facilitate and coordinate security/privacy management aspects by exposing

service control (Istio) and vulnerability detection/mitigation tools.

The MATRYCS modules will integrate with the End-to-End Security Framework via the framework’s API

layer. Although most privacy and security features will be provided through the designated interfaces,

some aspects, such as vulnerability detection/mitigation, additionally require direct module integration.

This will be realized through the use of plugins; the framework will implement integrable software

extensions to be optionally adopted by MATRYCS modules for providing extended security/privacy

features alongside consolidated framework API interactions. The definitive interactions, integration

guidelines and usage examples will be provided in conjunction with the plugin implementation whereas

the interactions and APIs implemented by the adopted tools are described in each respective tool’s

documentation – pointers given in section 3.2.

Whereas the initial implementation of the End-to-End Security Framework has been deployed on-

premises, the following deployments are planned for public cloud-based environments, thus

streamlining the integration and deployment phases. A transparent transition towards cloud

environments is enabled by the application of virtualization technologies in the development process,

also considering common deployment approaches. As the MATRYCS project opts for the EGI-ACE

infrastructure16, the framework is envisioned to be deployed in general purpose cloud compute instance

including Docker, exposing the framework’s functionalities over its API layer on a public IP for utilization

by the integrated MATRYCS modules, services, and assets. A preliminary specification of required cloud

resources by the framework installation, obtained using an empirical analysis and considering

16 https://www.egi.eu/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

49

D3.2: End-to-End Security Framework

integration assumptions/requirements of other MATRYCS components, is presented in Table 12.

Figure 19: End-to-End Security Framework interactions.

Table 12: End-to-End Security Framework cloud resource requirements.

Number of

CPU cores

Amount of RAM per

core (GB)

Local disk

(GB)

Number of VM

instances

Number of

public IPs

Volume

(GB)

4 2 20 1 1 50

4.1 Keycloak and MATRYCS Toolbox

Keycloak Authorization Process and Keycloak Authorization Services, as described in section 3.2.2.1, will

be used to secure MATRYCS Toolbox and its components. More specifically the Frontend Components

offered in SaaS layer (Advanced Visualizations & Reports Engine, MATRYCS Analytics Services, Digital

Building Twin) and the Virtual Workbench will be integrated with Keycloak in order to add the

Authorization layer on the top of them (see Figure 20). More specifically Role-based policies will be

created in order to grant permissions over resources, in MATRYCS case the resources will be the

analytical services accessed from users. Keycloak Resource servers will check user permissions and the

coupled role-based policies and according to their roles and the information that is obtained and

introspected from user’s Oauth2 Access Token will control the resource access. The following picture

demonstrates the connection of MATRYCS toolbox services through clients to secure their interfaces.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

50

D3.2: End-to-End Security Framework

Figure 20: MATRYCS Toolbox integration with Keycloak.

KEYCLOAK REST APIs

The Keycloak REST APIs that will be used are demonstrated in Table 13. The provided collection is used

to get user’s OAuth2 access token, to Introspect and resolve user’s roles and attributes, to retrieve the

list of resources that exist on a Keycloak Resource Server, to create a role-based permission over a

resource, to get the list of permissions and get details for a provided resource.

Table 13: Keycloak REST APIs.

Get User Token

POST /auth/realms/${REALM} /protocol/openid-connect/token HTTP/1.1

Host: ${HOST}:8080

Content-Type: application/x-www-form-urlencoded

grant_type=password&client_id=${CLIENT_ID}&client_secret=${CLIENT_SECRET}&scope=profile&username=${US

ERNAME}&password=${PASS}

Introspect User Token

POST /auth/realms/${REALM}/protocol/openid-connect/token/introspect/ HTTP/1.1

Host: ${HOST}:8080

Content-Type: application/x-www-form-urlencoded

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

51

D3.2: End-to-End Security Framework

client_id=${CLIENT_ID}&client_secret=${CLIENT_SECRET}&token=${USER_ACCESS_TOKEN}

Get List of Resources

GET /auth/realms/${REALM}/authz/protection/resource_set/ HTTP/1.1

Host: ${HOST}:8080

Authorization: ${RESOURCE_SERVER_CREDENTIALS}

Create Permission over a Resource

POST /auth/realms/${REALM}/authz/protection/uma-policy/${RESOURCE_ID}

Host: ${HOST}:8080

Authorization: $

Content-Type: application/json

{

 "name":"${NAME}",

 "description":"${DESCRIPTION}",

 "roles":["${ROLE} "]

}

Get Resource details

GET /auth/realms/${REALM}/authz/protection/resource_set/${RESOURCE_ID}

Host: ${HOST}:8080

Authorization: ${RESOURCE_SERVER_CREDENTIALS}

4.2 Istio and Generic MATRYCS Services

Istio, adopted as a part of the Security management submodule of the End-to-End Security Framework,

provides service control and monitoring capacities, enabling encrypted service-to-service

communication, definition of authentication and authorization policies, and automated metrics/logs

collection. Istio tool and the related security management aspects, as described in section 3.2.3.1, will be

employed to provide secure service mesh functionalities to implemented MATRYCS modules, software

solutions and services. Specifically, the service mesh shall be made available to the modules of MATRYCS-

GOVERNANCE, MATRYCS-PROCESSING and MATRYCS-ANALYTICS, especially focusing on AI/ML

services.

The End-to-End Security Framework deployment will include a common managed Istio daemon control

plane. In principle, the MATRYCS module/service owners may decide to adopt Istio on their own, apply

other similar security solution or mechanism, or utilize the common Istio deployment of the End-to-End

Security Framework. For the latter, we assume a Kubernetes deployment scenario with a remote cluster;

the Envoy sidecar proxies applied to modules/services utilize an ingress gateway to access common Istio

daemon. The steps for deploying and connecting the example service matrycs-service are listed in Table

14. The procedure consists of two parts. First, the application/service is locally deployed using

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

52

D3.2: End-to-End Security Framework

Kubernetes. Next, the appropriate gateways on the cluster are enabled and the deployed service is

exposed. In the example, the REMOTE_CTX refers to the name of the remote cluster’s context.

Table 14: Common Istio deployment connection procedure.

1. Create the namespace and deploy the service

> kubectl create --context="${REMOTE_CTX}" namespace matrycs

> kubectl label --context="${REMOTE_CTX}" namespace matrycs istio-injection=enabled

> kubectl apply -f matrycs-service.yaml -l service=matrycs-service -n matrycs --context="${REMOTE_CTX}

2. Create ingress and egress gateway configuration file

Filename: ingress-egress.yaml

apiVersion: install.istio.io/v1alpha1

kind: IstioOperator

spec:

 profile: empty

 components:

 ingressGateways:

 - namespace: external-istiod

 name: istio-ingressgateway

 enabled: true

 egressGateways:

 - namespace: external-istiod

 name: istio-egressgateway

 enabled: true

 values:

 gateways:

 istio-ingressgateway:

 injectionTemplate: gateway

 istio-egressgateway:

 injectionTemplate: gateway

3. Enable ingress and egress gateways

> istioctl install -f ingress-egress.yaml --context="${REMOTE_CTX}"

4. Create service gateway configuration file

Filename: matrycs-service-gateway.yaml

apiVersion: networking.istio.io/v1alpha3

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

53

D3.2: End-to-End Security Framework

kind: Gateway

metadata:

 name: matrycs-service-gateway

spec:

 selector:

 istio: ingressgateway

 servers:

 [insert service configuration]

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: matrycs-service

spec:

 hosts:

 - "*"

 gateways:

 - matrycs-service-gateway

 http:

 [insert service configuration]

5. Expose the service on the gateways

> kubectl apply -f matrycs-service-gateway.yaml -n matrycs --context="${REMOTE_CTX}"

6. Set the gateway URL

> export INGRESS_HOST=$(kubectl -n external-istiod --context="${REMOTE_CTX}" get service istio-

ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

> export INGRESS_PORT=$(kubectl -n external-istiod --context="${REMOTE_CTX}" get service istio-

ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')

> export GATEWAY_URL=$INGRESS_HOST:$INGRESS_PORT

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

54

D3.2: End-to-End Security Framework

5 Security Guidelines and Recommendations

To secure the MATRYCS ecosystem, apt security standards must be ensured by means of applying

adequate measures throughout the complete lifecycle of the project, from development up to and

including operational phases. The iterative nature of ensuring security, which is characterized by

continuous identification and mitigation of risks, is captured in the essence of the End-to-End Security

Framework; the feedback loop, described in section 3.1, upon identifying and evaluating security concerns

triggers a potential recalibration of the framework. The framework, in addition to a security toolbox,

consists of a set of practical security guidelines and recommendations for the DevSecOps process, which

should recognize appropriate security practices, standards and processes. The guidelines should

streamline the inclusion of best security practices on various implementation levels while also providing

direct recommendations on realistic inclusion of relevant security processes.

In Table 15, a collection of proposed security guidelines and recommendations to be adopted by the

MATRYCS consortium – specifically developers and operators of the MATRYCS modules, assets, and

infrastructure – is available. The guidelines and recommendations have been identified upon reviewing

the related work, which is denoted in the table, and focus on general as well as technical aspects covered

in MATRYCS, i.e., services, systems, and networks.

Table 15: Security guidelines and recommendations.

Category ID Description Source

General GR_GE1 Regularly apply software/system updates. [7]

GR_GE2 Implement and configure fine-grained authorization and apply the

principle of least privilege.

[7]

GR_GE3 Do not reuse credentials. [7]

GR_GE4 Encrypt data at rest. [7]

GR_GE5 Store credentials securely. [30]

GR_GE6 Define access control policies. [30]

GR_GE7 Maintain optimal condition of computer hardware and software. [30]

GR_GE8 Implement auditing mechanisms and adopt related tools. [31]

GR_GE9 Perform continuous monitoring of the security status. [31]

Service GR_SE1 Avoid vulnerable programming languages and libraries. [7]

GR_SE2 Perform code analysis, also manual. [7]

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

55

D3.2: End-to-End Security Framework

GR_SE3 Use applicable software engineering practices, e.g., data validation

and error handling.

[7]

GR_SE4 Apply microservice design. [7]

GR_SE5 Apply comprehensive event and action auditing mechanisms. [29]

Network GR_NE1 Use standard and verified protocols, e.g., TLS. [7]

GR_NE2 Protect service-to-service communication using mutual TLS and

internal PKI.

[7]

GR_NE3 Apply principal propagation via security tokens, e.g., JWT. [7]

GR_NE4 Apply appropriate firewall policies. [30]

GR_NE5 Encrypt electronic communication. [30]

GR_NE6 Evaluate data access control and data security at rest, in transit and

in use.

[31]

System GR_SY1 Use trusted and reliable hardware with hardware security modules. [7]

GR_SY2 Use deployment models with strong isolation, i.e., virtualization. [7]

GR_SY3 Use trusted and reliable orchestration platforms with a secure

service discovery/registry implementation.

[7]

GR_SY4 Ensure physical protection of hardware. [29]

GR_SY5 Implement appropriate backup and disaster recovery mechanisms. [29]

GR_SY6 Use anti-viral software with automated updating. [30]

GR_SY7 Use uninterruptible power supply on critical systems. [30]

GR_SY8 Ensure sufficient safeguards for authentication, authorization, and

identity/access management.

[31]

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

56

D3.2: End-to-End Security Framework

6 Conclusions

The MATRYCS project, which aims to provide an AI-powered framework for real-life building energy

applications, heavily relies on modern information and communication technologies. Consequently,

there is a need for a vertical security layer ensuring appropriate security standards throughout all of the

phases, from development to operational. This is achieved by the development of the End-to-End

Security Framework described in this deliverable, a composition of a software toolbox and practical set

of security guidelines and recommendations to be applied during the DevSecOps process. The toolbox,

built using virtualization technologies, bases on Keycloak and Istio tools that enable authentication,

authorization, auditing and enforcement of various security/privacy aspects on application level.

Furthermore, the framework will adopt a vulnerability detection and mitigation toolset. The integration

of the framework with the MATRYCS technology stack is facilitated using a set of APIs and the related

security plugin. Finally, the admin GUI provides graphical access to relevant functionalities aimed at

MATRYCS system administrators.

In the following, the envisioned future activities carried out as a part of the T3.6 End-to-End Security

Framework are listed. These activities will be reported in the relevant upcoming deliverables, i.e., D3.3 –

MATRYCS-GOVERNANCE (2nd technology release) and D3.4 – MATRYCS-GOVERNANCE (final technology

release).

Future activities

 Selection and adoption of an appropriate vulnerability detection and mitigation toolset.

 Development of the End-to-End Security Framework plugin for extended security/privacy

feature integration.

 Release of the final MATRYCS End-to-End Security Framework implementation.

 Finalization and harmonization of the integration aspects (e.g., required authentication and

roles) with other technical WPs and module owners.

 Deployment of the End-to-End Security Framework on the selected public cloud

infrastructure.

 Continuous monitoring as well as potential refinement of project’s technical security aspects

and support to consortium with respect to inclusion of security guidelines and integration

of the End-to-End Security Framework.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

57

D3.2: End-to-End Security Framework

References

[1] 14:00-17:00, “ISO/IEC 27000:2018,” ISO.

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/39/73906.html

(accessed Nov. 02, 2021).

[2] S. Samonas and D. Coss, “The CIA Strikes Back: Redefining Confidentiality, Integrity and

Availability in Security,” Journal of Information System Security, vol. 10, no. 3, pp. 21–45, 2014.

[3] E. Asanghanwa and R. Ih, “Security for Intelligent, Connected IoT Edge Nodes,” p. 10.

[4] J. R. Vacca, Public Key Infrastructure: Building Trusted Applications and Web Services. CRC Press,

2004.

[5] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash, “An In-Depth Analysis of IoT

Security Requirements, Challenges, and Their Countermeasures via Software-Defined Security,” IEEE

Internet of Things Journal, vol. 7, no. 10, pp. 10250–10276, Oct. 2020, doi: 10.1109/JIOT.2020.2997651.

[6] I. Indu, P. M. R. Anand, and V. Bhaskar, “Identity and access management in cloud environment:

Mechanisms and challenges,” Engineering Science and Technology, an International Journal, vol. 21, no.

4, pp. 574–588, Aug. 2018, doi: 10.1016/j.jestch.2018.05.010.

[7] T. Yarygina and A. H. Bagge, “Overcoming Security Challenges in Microservice Architectures,” in

2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), Mar. 2018, pp. 11–20. doi:

10.1109/SOSE.2018.00011.

[8] M. Waseem, P. Liang, M. Shahin, A. Ahmad, and A. R. Nassab, “On the Nature of Issues in Five

Open Source Microservices Systems: An Empirical Study,” in Evaluation and Assessment in Software

Engineering, New York, NY, USA, Jun. 2021, pp. 201–210. doi: 10.1145/3463274.3463337.

[9] S. Dilmaghani, M. R. Brust, G. Danoy, N. Cassagnes, J. Pecero, and P. Bouvry, “Privacy and Security

of Big Data in AI Systems: A Research and Standards Perspective,” in 2019 IEEE International Conference

on Big Data (Big Data), Dec. 2019, pp. 5737–5743. doi: 10.1109/BigData47090.2019.9006283.

[10] Y. Mirsky et al., “The Threat of Offensive AI to Organizations,” arXiv:2106.15764 [cs], Jun. 2021,

Accessed: Nov. 02, 2021. [Online]. Available: http://arxiv.org/abs/2106.15764

[11] E. Krishnasamy, S. Varrette, and M. Mucciardi, “Edge Computing: An Overview of Framework and

Applications,” p. 20.

[12] I. Voras et al., “Evaluating open-source cloud computing solutions,” in 2011 Proceedings of the

34th International Convention MIPRO, May 2011, pp. 209–214.

[13] A. Kurbatov, “Design and implementation of secure communication between microservices,” Jan.

2021, Accessed: Nov. 02, 2021. [Online]. Available:

https://aaltodoc.aalto.fi:443/handle/123456789/102405

[14] A. Khatri, V. Khatri, D. Nirmal, H. Pirahesh, and E. Herness, Mastering Service Mesh: Enhance,

secure, and observe cloud-native applications with Istio, Linkerd, and Consul. Packt Publishing, 2020.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

58

D3.2: End-to-End Security Framework

[15] S. Shahzadi, M. Iqbal, Z. U. Qayyum, and T. Dagiuklas, “Infrastructure as a service (IaaS): A

comparative performance analysis of open-source cloud platforms,” in 2017 IEEE 22nd International

Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Jun.

2017, pp. 1–6. doi: 10.1109/CAMAD.2017.8031522.

[16] S. Ismaeel, A. Miri, D. Chourishi, and S. M. Reza Dibaj, “Open Source Cloud Management

Platforms: A Review,” in 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing,

Nov. 2015, pp. 470–475. doi: 10.1109/CSCloud.2015.84.

[17] L. D. Kurup, C. Chandawalla, Z. Parekh, and K. Sampat, “Comparative Study of Eucalyptus, Open

Stack and Nimbus,” vol. 4, no. 6, p. 5, 2015.

[18] “Best Practices in Implementing a Secure Microservices,” CSA.

https://cloudsecurityalliance.org/artifacts/best-practices-in-implementing-a-secure-microservices-

architecture/ (accessed Nov. 02, 2021).

[19] G. Conway, “Introduction to Cloud Computing,” Jan. 2011.

https://mural.maynoothuniversity.ie/2970/ (accessed Nov. 02, 2021).

[20] P. K. Chouhan, F. Yao, and S. Sezer, “Software as a service: Understanding security issues,” in

2015 Science and Information Conference (SAI), Jul. 2015, pp. 162–170. doi: 10.1109/SAI.2015.7237140.

[21] “Software Reuse in the Era of Opportunistic Design.”

https://ieeexplore.ieee.org/document/8693072 (accessed Nov. 02, 2021).

[22] D. Pöhn and W. Hommel, “Universal Identity and Access Management Framework for Future

Ecosystems,” vol. 12, pp. 64–84, Mar. 2021, doi: 10.22667/JOWUA.2021.03.31.064.

[23] E. Maler, M. Machulak, and J. Richer, “User-Managed Access (UMA) 2.0 Grant for OAuth 2.0

Authorization,” Jan. 07, 2018. https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

(accessed Nov. 02, 2021).

[24] “What’s a service mesh?” https://www.redhat.com/en/topics/microservices/what-is-a-service-

mesh (accessed Nov. 02, 2021).

[25] M. Klein, “Service mesh data plane vs. control plane,” Medium, Oct. 10, 2017.

https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc (accessed Nov. 02,

2021).

[26] R. Chandramouli, “Security strategies for microservices-based application systems,” National

Institute of Standards and Technology, Gaithersburg, MD, NIST SP 800-204, Aug. 2019. doi:

10.6028/NIST.SP.800-204.

[27] “The Best Programming Languages for Cybersecurity in 2021.”

https://flatironschool.com/blog/best-programming-languages-cyber-security/ (accessed Nov. 02,

2021).

[28] “CWE - Common Weakness Enumeration.” https://cwe.mitre.org/index.html (accessed Nov. 02,

2021).

[29] R. Lehtinen and G. T. G. Sr, Computer Security Basics, 2nd edition. Sebastopol, CA: O’Reilly Media,

2006.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

59

D3.2: End-to-End Security Framework

[30] P. Schattner, C. Pleteshner, H. Bhend, and J. Brouns, “Guidelines for computer security in general

practice,” Inform Prim Care, vol. 15, no. 2, pp. 73–82, 2007, doi: 10.14236/jhi.v15i2.645.

[31] T. Grance and W. Jansen, “Guidelines on Security and Privacy in Public Cloud Computing,” Dec.

2011, Accessed: Nov. 02, 2021. [Online]. Available: https://www.nist.gov/publications/guidelines-

security-and-privacy-public-cloud-computing

	1 Introduction
	1.1 Purpose of the Document
	1.2 Structure of the Document

	2 Security in Information Systems
	2.1 Root of Trust
	2.2 End-to-End Security
	2.2.1 Edge Environments
	2.2.2 Cloud Environments

	2.3 Identity and Access Management
	2.3.1 OAuth2 Protocol
	2.3.2 UMA 2 Protocol
	2.3.2.1 UMA 2 Flow

	2.3.3 UMA 2 and OAuth2: The Difference

	2.4 Service-Level Security
	2.4.1 Software Vulnerabilities and Threats

	3 End-to-End Security Framework
	3.1 Design
	3.2 Technologies
	3.2.1 PostgreSQL
	3.2.2 Keycloak
	3.2.2.1 Keycloak Authorization Process

	3.2.3 Istio
	3.2.3.1 Istio Security Management

	3.2.4 Vulnerability Detection and Mitigation

	3.3 Initial Implementation

	4 Security Integration in MATRYCS Ecosystem
	4.1 Keycloak and MATRYCS Toolbox
	4.2 Istio and Generic MATRYCS Services

	5 Security Guidelines and Recommendations
	6 Conclusions

